Sample Problems

Solve each of the following inequalities. Graph the solution set.

1. $-7>-5 x+3$
2. $3(x-2) \leq 2 x+1$
3. $5(4 x-1)-(x-3) \geq-x-2$
4. $\frac{m+4}{2}-\frac{4 m+3}{5}>2$

Practice Problems

Solve each of the following inequalities. Graph the solution set.

1. $x-17>-4 x+3$
2. $2 x+5>\frac{3 x-1}{2}-\frac{2 x+1}{3}$
3. $-3 x+5 \leq 12$
4. $5(x-1)-3(x+1) \geq 3 x-8$
5. $5 y+3<y-7$
6. $-2 x-(3 x-1) \geq 2(5-3 x)$
7. $\frac{2}{3} x-1 \geq x$
8. $5-(3 a-2)<-2$
9. $5 x-2>3(x-1)-4 x+1$
10. $-3(x-2) \leq-2 x+5$
11. $3 x-2(x-1)<-2 x-1$
12. $-w+13 \geq 2 w+1$
13. $3(x-4)+5(x+8) \leq 2(x-1)$
14. $2 x+6>\frac{3 x-1}{5}-\frac{7-x}{3}$
15. $-\frac{2}{5}(x+1)+\frac{1}{2}(x-4) \geq \frac{3}{10} x$
16. $\frac{3 x-1}{4}+\frac{8-4 x}{3} \leq-3-x$
17. $\frac{x-2}{5}-\frac{x}{2}<x-16$
18. $\frac{2 x+1}{3}+2 \geq x+\frac{3-x}{2}$

Answers - Sample Problems

1. set-builder notation: $\{x \mid x>2\}$ interval notation: $(2, \infty)$
graph:

2. set-builder notation: $\{x \mid x \leq 7\}$ interval notation: $(-\infty, 7]$ graph:

3. set-builder notation: $\{x \mid x \geq 0\}$ interval notation: $[0, \infty)$
graph:

4. set-builder notation: $\{x \mid x<-2\}$ interval notation: $(-\infty,-2)$ graph:

Answers - Practice Problems

1. set-builder notation: $\{x \mid x>4\}$
interval notation: $(4, \infty)$
graph:

2. set-builder notation: $\left\{x \left\lvert\, x \geq-\frac{7}{3}\right.\right\}$ interval notation: $\left[-\frac{7}{3}, \infty\right)$ graph:

3. set-builder notation: $\left\{x \left\lvert\, x<-\frac{5}{2}\right.\right\}$ interval notation: $\left(-\infty,-\frac{5}{2}\right)$ graph:

4. set-builder notation: $\{x \mid x \geq 9\}$
interval notation: $[9, \infty)$
graph:

5. set-builder notation: $\{x \mid x \leq-3\}$
interval notation: $(-\infty,-3]$
graph:

6. set-builder notation: $\{x \mid x>3\}$ interval notation: $(3, \infty)$
graph:

7. set-builder notation: $\{x \mid x>0\}$ interval notation: $(0, \infty)$ graph:

8. set-builder notation: $\{x \mid x \geq 1\}$ interval notation: $[1, \infty)$
graph:

9. set-builder notation: $\{x \mid x<-1\}$
interval notation: $(-\infty,-1)$
graph:

10. set-builder notation: $\{x \mid x \leq 4\}$
interval notation: $(-\infty, 4]$
graph:

11. set-builder notation: $\{x \mid x>-5\}$
interval notation: $(-5, \infty)$
graph:

12. set-builder notation: $\{x \mid x \leq 0\}$
interval notation: $(-\infty, 0]$
graph:

13. set-builder notation: $\{x \mid x \leq-5\}$
interval notation: $(-\infty,-5]$
graph:

14. set-builder notation: $\{x \mid x>-8\}$
interval notation: $(-8, \infty)$
graph:

15. set-builder notation: $\{x \mid x \leq-12\}$
interval notation: $\quad(-\infty,-12]$
graph:

16. set-builder notation: $\{x \mid x \leq-13\}$ interval notation: $(-\infty,-13]$ graph:

17. set-builder notation: $\{x \mid x>12\}$
interval notation: $(12, \infty)$
graph:

18. set-builder notation: $\{x \mid x \geq-5\}$ interval notation: $[-5, \infty)$
graph:

Sample Problems - Solutions

1. $-7>-5 x+3$

Solution: Solving linear inequalities requires almost the same techniques as solving linear equations. There is only one difference: when multiplying or dividing an inequality by a negative number, the inequality sign must be reversed.

$$
\begin{aligned}
-7 & >-5 x+3 & & \text { subtract } 3 \\
-10 & >-5 x & & \text { divide by }-5 \\
2 & <x & &
\end{aligned}
$$

When we divided both sides by -5 , we reversed the inequality sign. The final answer is all real numbers greater than 2. This set of numbers can be presented in numerous ways:

1) set-builder notation: $\{x \mid x>2\}$
2) interval notation: $(2, \infty)$
3) graphing the solution set on the number line:

2. $3(x-2) \leq 2 x+1$

Solution:

$$
\begin{aligned}
3(x-2) & \leq 2 x+1 & & \text { distribute } \\
3 x-6 & \leq 2 x+1 & & \text { subtract } 2 x \\
x-6 & \leq 1 & & \text { add } 6 \\
x & \leq 7 & &
\end{aligned}
$$

The final answer is all real numbers less than or equal to 7 . This set of numbers can be presented in numerous ways:

1) set-builder notation: $\{x \mid x \leq 7\}$
2) interval notation: $(-\infty, 7]$
3) graphing the solution set on the number line:

3. $5(4 x-1)-(x-3) \geq-x-2$

Solution:

$$
\begin{aligned}
5(4 x-1)-(x-3) & \geq-x-2 & & \text { distribute } \\
20 x-5-x+3 & \geq-x-2 & & \text { combine like terms } \\
19 x-2 & \geq-x-2 & & \text { add } 2 \\
19 x & \geq-x & & \text { add } x \\
20 x & \geq 0 & & \text { divide by } 20 \\
x & \geq 0 & &
\end{aligned}
$$

The final answer is all real numbers greater than or equal to 0 . This set of numbers can be presented in numerous ways: in set-builder notation: $\{x \mid x \geq 0\}$, in interval notation: $[0, \infty)$, or by graphing the solution set on the number line:

4. $\frac{m+4}{2}-\frac{4 m+3}{5}>2$

Solution:

$$
\begin{aligned}
\frac{m+4}{2}-\frac{4 m+3}{5} & >2 & & \text { make everything a fraction } \\
\frac{m+4}{2}-\frac{4 m+3}{5} & >\frac{2}{1} & & \text { bring to common denominator } \\
\frac{5(m+4)}{10}-\frac{2(4 m+3)}{10} & >\frac{20}{10} & & \text { multiply by } 15 \\
5(m+4)-2(4 m+3) & >20 & & \text { distribute } \\
5 m+20-8 m-6 & >20 & & \text { combine like terms } \\
-3 m+14 & >20 & & \text { subtract } 14 \\
-3 m & >6 & & \text { divide by }-3 \\
m & <-2 & &
\end{aligned}
$$

When we divided both sides by -3 , we reversed the inequality sign. The final answer is all real numbers less than -2 . This set of numbers can be presented in numerous ways: in set-builder notation: $\{x \mid x<-2\}$, in interval notation: $(-\infty,-2)$, or by graphing the solution set on the number line:

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. If you have any questions or comments, e-mail to mhidegkuti@ccc.edu.

